

# **Driveshaft Application Guidelines**

DSAG-0200 May 2022

### **Driveline Sizing**

| Specifying a Spicer Driveline - Application Definitions | 2 |
|---------------------------------------------------------|---|
| Driveline Series Selection – Metric Units               | 3 |
| Interaxle Driveline Series Selection – Metric Units     | 5 |
| Main Driveline Series Selection – English Units         | 6 |
| Interaxle Driveline Series Selection – English Units    | 8 |
| Application Ratings, Factors and Requirements Tables .  |   |

### **Critical Speed**

| Critical Speed Definition  |  |
|----------------------------|--|
| Standard Equation          |  |
| Simplified Equations       |  |
| Adjusted Critical Speed    |  |
| Maximum Driveshaft Length  |  |
| Spicer Standard Tube Sizes |  |

### **Center Bearing Mounting**

| Center Bearing Moun | ting | 15 |
|---------------------|------|----|

### **Driveline Analysis**

| Driveline Analysis                | 16 |
|-----------------------------------|----|
| Design Criteria                   |    |
| Torsional and Inertial Excitation |    |
| Center Bearing Loading            | 19 |

### Appendix

| Application Form                    | 21 |
|-------------------------------------|----|
| End Yoke Dimensions                 | 23 |
| Attaching Hardware and Torque Specs | 28 |

# **Specifying a Spicer Driveline**

#### **Application Definitions**

- Domestic applications restricted to North America, Europe, Brazil, Japan, Australia, and New Zealand.
- Export applications outside of North America, Europe, Brazil, Japan, Australia, and New Zealand.

\*Driveline sizing for export applications is based on Maximum Driveshaft Torque and Bearing Life calculations **only**. The wheel slip torque calculation is not used for Export applications due to overload conditions that can occur in these regions.

| Application Description         | Application Definition                                                                                                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linehaul                        | Vehicles transporting goods in excess of 60,000 mi (100,000 Km) per year over well maintained concrete and asphalt<br>roadways with a maximum grade of 8% and a maximum GCW of 80,000 lbs. (36,300 Kg).                                     |
| Regional Haul / General Freight | Vehicles transporting goods in excess of 60,000 mi (100,000 Km) per year over well maintained concrete and asphalt<br>roadways with a maximum GCW of 80,000 lbs. (36,300 Kg) with typical trips between 100 and 300 miles (160 and 480 Km). |
| Refrigerated                    | Vehicles transporting frozen foods in excess of 60,000 mi (100,000 Km) per year over well maintained concrete and asphalt roadways with a maximum GCW of 80,000 lbs. (36,300 Kg) with typical trips over 100 miles (160 Km).                |
| Liquid Bulk                     | Vehicles transporting Bulk liquids in excess of 60,000 mi (100,000 Km) per year over well maintained concrete and ashphalt roadways with a maximum GCW of 80,000 lbs. (36,300 Kg) with typical trips over 100 miles (160 Km).               |
| Coach Bus                       | Vehicles used for transporting passengers in excess of of 60,000 mi (100,000 Km) per year over well maintained concrete and asphalt roadways with a GVW in excess of 33,000 lbs. (15,000 Kg).                                               |
| Wrecker                         | Trucks with recovery body used for recovering and towing stranded vehicles and equipment over well maintained concrete and ashphalt roadways.                                                                                               |
| Heavy Equipment                 | Tractors used for transport of heavy equipment, machinery, and materials in excess of 80,000 lbs. (36,300 kg) GCW over well maintained concrete and ashphalt roadways.                                                                      |
| Refuse                          | Vehicles used for collecting, transporting and disposing of waste material from residential, commercial or industrial sites.<br>Examples include vacuum tank, rear packer, recycling and rear dump trailers.                                |
| Agriculture                     | Vehicles used primarily to transport agricultural and dairy products from the farm or field to processing or storage facilitities. Examples include feed trucks, bulk tank, dump and hopper bottom trailers.                                |
| Oil Field                       | Vehicles used primarily to support on site activities in the exploration, construction and drilling of oil and natural gas wells.<br>Examples include bulk tanker, facturing, winch and service trucks.                                     |
| Construction                    | Vehicles used primarily to transport building materials and support activities at construction sites of residential, commercial, industrial and roadways. Examples include mixer, dump, flat bed, tanker and paving.                        |
| Logging                         | Vehicle used to transport logs or wood chips from logging sites to processing facilities over un-improved roads and steep grades.                                                                                                           |
| Utility                         | Trucks with specialized bodies used to tranport equipment and materials used to perform repairs and maitenance of public infrastructure at residential, commercial and industrial work sites including some off-road operation.             |
| Mining                          | Vehicles primarily used to transport rock and minerals within a mining site or to an off-site collection/processing facility.<br>These are typically high horsepower / high capacity vehicles subjected to severe operating conditions.     |
| Military                        | Vehicles produced for government agencies by the defense industry primarily used to transport personel, equipment and materials operating in severe off-road conditions.                                                                    |
| City P&D                        | Vehicles used to transport goods to and from residential, commercial, industrial and warehousing sites operating on city, suburban, and rural routes with multiple stop/start cycles per day within a 50 mile (80 Km) radius.               |
| Shuttle Bus                     | Vehicles used to transport passengers between sites making multiple trips per hour. Examples include airport, hotel and parking lot shuttles.                                                                                               |
| Transit Bus                     | Vehicles used to transport passengers over city or suburban routes making multiple stops per hour.                                                                                                                                          |
| Fire/Rescue                     | Vehicles used to transport people and equipment to the site of an emergency to extinguish fires and evacuate and transport injured victims to a medical facility.                                                                           |
| School Bus                      | Vehicles specifically designed to transport passengers to and from school and extracurricular activities. Includes Prison and church busses.                                                                                                |
| Recreational Vehicle            | Vehicles used for non-commercial transportation travelling less than 30,000 mi. (48,280 Km) per year. May pull a small trailer or automobile.                                                                                               |

# **Main Driveline Series Selection - Metric Units**

<u>Step 1</u> - Low Gear Torque Calculation – Use the following formula to calculate the maximum torque imparted to the driveline from the engine.

#### $LGT = T_E x 0.95 x TLGR x E_T x SR x TCR x E_C$ (Nm)

LGT = Maximum Driveshaft Low Gear Torque (Nm)  $T_E$  = Gross Engine Torque (advertised torque rating) (Nm) TLGR = Transmission Low Gear Ratio (forward only) \*  $E_T$  = Transmission Efficiency (automatic = 0.90; manual = 0.95) SR = Torque Converter Stall Ratio (if applicable) TCR = Transfer Case or Auxiliary Transmission Ratio (if applicable)  $E_C$  = Transfer Case or Auxiliary Transmission Efficiency (if applicable, 0.95)

\* Some applications require deep reduction transmissions for speed-controlled operations such as paving and pouring. In these applications it may be more appropriate to use the <u>second lowest</u> forward transmission ratio to calculate the Maximum Low Gear Torque. To use the second lowest forward gear ratio to calculate LGT, all three of the following conditions must be met:

- 1. Lowest forward gear ratio numerically greater than 16:1.
- 2. Split between the lowest forward gear ratio and the second lowest forward gear ratio is greater than 50%.
- 3. Startability Index must be greater than 25 (see below calculation).

#### Startability Index Calculation (SI)

 $SI = ((T_E x TR_2 x E_T x AR x TCR x E_C x 4.6) / (SLR x GCW)) - .75$ 

T<sub>E</sub> = Gross Engine Torque (advertised torque rating) (Nm)

TR<sub>2</sub> = Transmission Second Lowest Forward Gear Ratio

 $E_T$  = Transmission Efficiency (automatic = 0.90; manual = 0.95)

AR = Axle Ratio

TCR = Transfer Case or Auxiliary Transmission Ratio (if applicable)

E<sub>c</sub> = Transfer Case Efficiency (if applicable, 0.95)

SLR = Drive Tire Static Loaded Radius (m)

GCW = Maximum Gross Combination Weight (kg)

<u>Step 2</u> - Wheel Slip Torque Calculation – Use the following formula to calculate the main driveshaft torque required to slip the wheels.

Note: The wheel slip calculation is used for Domestic applications only. See Application Definitions on Page 2.

 $WST = (6.965 x GAWR x R_S) / (AR x E_A)$  (Nm)

WST = Wheel Slip Torque Applied to the Driveshaft (Nm) GAWR = Gross Axle Weight Rating (kg) SLR = Drive Tire Static Loaded Radius (m) AR = Axle Ratio E<sub>A</sub> = Axle Efficiency (single axle = .95, tandem axle = .926, tridem axle =.914)

\* Compare the Low Gear Torque (LGT) calculated in step 1 and the Wheel Slip Torque (WST) calculated in step 2 and use the <u>lower</u> of the two values as the "application torque" to select the appropriate driveline Series from table 2 on page 9. The maximum torque rating of the selected Series must be equal to or greater than the application torque value.

Step 3 – Calculate the Universal Joint Bearing Life (B<sub>10</sub>) for the Series selected in Step 2.

 $\boldsymbol{B}_{10} = 98,000 \ x \left( AR / (SLR \ x \ 1. \ 04) \right)^{(7/3)} x \left( BF / (GCW \ x \ AF) \right)^{(10/3)} \ (Km)$ 

GCW = Maximum Gross Combination Weight (Kg) AF = Application Factor (See **Table 1** on Page 9) SLR = Drive Tire Static Loaded Radius (m) AR = Axle Ratio BF = Universal Joint Bearing Factor (Nm) (See **Table 2** on Page 9)

Note: The bearing life formula assumes a universal joint true operating angle  $\leq 3^{\circ}$ . For main driveline applications with static universal joint true operating angles in excess of 3° the formula can be adjusted by replacing the 98,000 constant value with 294,000 ÷ true operating angle.

**<u>Step 4</u>** – Compare the B<sub>10</sub> universal joint bearing life value calculated in step 3 to the Bearing Life Requirement (B<sub>10</sub>) for your application listed in **table 1** on page 9. The calculated B<sub>10</sub> bearing life must exceed the requirement of the vehicle application. If the B<sub>10</sub> bearing life does not meet the application requirement repeat step 3 for the next larger Series until the B<sub>10</sub> requirement is met.

# **Interaxle Driveline Series Selection (If Applicable)**

<u>Step 1</u> – Calculate the torque capacity requirement for the interaxle driveshaft using the following formula.

 $T = T_m x 0.60$  (Nm) (tandem axle and tridem 1<sup>st</sup> interaxle)

T = Interaxle driveshaft torque requirement (Nm)

 $T_m$  = Main driveline application torque requirement from step 2, page 4 (Nm).

\* Use the calculated application torque value to select the appropriate interaxle driveline Series from **table 2** on page 9. The maximum torque rating of the selected Series must be equal to or greater than the application torque value.

Note: High angle (45°) interaxle driveshafts are available in C2045, C2055, SPL170, SPL250 and 1710 Series only.

# <u>Step 2</u> – Calculate the Universal Joint Bearing Life (B<sub>10</sub>) for the Series selected in Step 1 using the following formula.

 $B_{10} = 294,000 \ x \ (AR/(SLR \ x \ 1. \ 04))^{(7/3)} \ x \ (BF/(GCW \ x \ AF))^{(10/3)}$  (Km)

GCW = Maximum Gross Combination Weight (Kg) AF = Application Factor (See **Table 1** on Page 9) SLR = Drive Tire Static Loaded Radius (m) AR = Axle Ratio BF = Universal Joint Bearing Factor (Nm) (See **Table 3** on Page 10)

# Note: For interaxle driveline applications with static universal joint true operating angles in excess of 6 degrees contact Spicer Engineering.

<u>Step 3</u> – Compare the  $B_{10}$  universal joint bearing life value calculated in step 2 to the Bearing Life Requirement ( $B_{10}$ ) for your application listed in **table 3** on page 10. The calculated  $B_{10}$  bearing life must exceed the requirement of the vehicle application. If the  $B_{10}$  bearing life does not meet the application requirement repeat step 2 for the next larger Series until the  $B_{10}$  requirement is met.

For tridem applications, the  $2^{nd}$  interaxle driveshaft can be the same or one Series smaller than the forward interaxle driveshaft (torque capacity and B<sub>10</sub> life calculations are not needed).

# Main Driveline Series Selection - English Units

<u>Step 1</u> - Low Gear Torque Calculation – Use the following formula to calculate the maximum torque imparted to the driveline from the engine.

 $LGT = T_E x 0.95 x TLGR x E_T x SR x TCR x E_C$  (lb.ft.)

LGT = Maximum Driveshaft Low Gear Torque (lb.ft.)  $T_E$  = Gross Engine Torque (advertised torque rating) (lb.ft.) TLGR = Transmission Low Gear Ratio (forward only) \*  $E_T$  = Transmission Efficiency (automatic = 0.90; manual = 0.95) SR = Torque Converter Stall Ratio (if applicable) TCR = Transfer Case or Auxiliary Transmission Ratio (if applicable)  $E_C$  = Transfer Case or Auxiliary Transmission Efficiency (if applicable, 0.95)

\* Some applications require deep reduction transmissions for speed-controlled operations such as paving and pouring. In these applications it may be more appropriate to use the <u>second</u> <u>lowest</u> forward transmission ratio to calculate the Maximum Low Gear Torque. To use the second lowest forward gear ratio to calculate LGT, all three of the following conditions must be met:

- 1. Lowest forward gear ratio numerically greater than 16:1.
- 2. Split between the lowest forward gear ratio and the second lowest forward gear ratio is greater than 50%.
- 3. Startability Index must be greater than 25 (see below calculation).

#### **Startability Index Calculation (SI)**

 $SI = ((T_E x TR_2 x E_T x AR x TCR x E_C x 541.5) / (SLR x GCW)) - .75$ 

T<sub>E</sub> = Gross Engine Torque (advertised torque rating) (lb.ft.)

TR<sub>2</sub> = Transmission Second Lowest Forward Gear Ratio

 $E_T$  = Transmission Efficiency (automatic = 0.90; manual = 0.95)

AR = Axle Ratio

TCR = Transfer Case or Auxiliary Transmission Ratio (if applicable)

 $E_{C}$  = Transfer Case Efficiency (if applicable, 0.95)

SLR = Drive Tire Static Loaded Radius (in.)

GCW = Maximum Gross Combination Weight (lb.)

<u>Step 2</u> - Wheel Slip Torque Calculation– Use the following formula to calculate the main driveshaft torque required to slip the wheels.

Note: The wheel slip calculation is used for Domestic applications only. See Application Definitions on Page 2.

 $WST = (GAWR \ x \ SLR) / (16.9 \ x \ AR \ x \ E_A)$  (lb.ft.)

WST = Wheel Slip Torque Applied to the Driveshaft (lb.ft.)
GAWR = Gross Axle Weight Rating (lbs.)
SLR = Drive Tire Static Loaded Radius (in.)
AR = Axle Ratio
E<sub>A</sub> = Axle Efficiency (single axle = .95, tandem axle = .926, tridem axle = .914)

\* Compare the Low Gear Torque (LGT) calculated in step 1 and the Wheel Slip Torque (WST) calculated in step 2 and use the <u>lower</u> of the two values as the "application torque" to select the appropriate driveline Series from table 2 on page 9. The maximum torque rating of the selected Series must be equal to or greater than the application torque value.

# <u>Step 3</u> – Calculate the Universal Joint Bearing Life (B<sub>10</sub>) for the Series selected in Step 2.

 $B_{10} = 60,900 x (AR x 37.8559/SLR)^{(7/3)} x (BF x 2.989/(GCW x AF))^{(10/3)} (mi.)$ 

GCW = Maximum Gross Combination Weight (lbs.) AF = Application Factor (See **Table 1** on Page 9) SLR = Drive Tire Static Loaded Radius (in.) AR = Axle Ratio BF = Universal Joint Bearing Factor (lb.ft., See **Table 2** on Page 9)

Note: The bearing life formula assumes a universal joint true operating angle  $\leq 3^{\circ}$ . For main driveline applications with static universal joint true operating angles in excess of 3° the formula can be adjusted by replacing the 60,900 constant value with 182,700 ÷ true operating angle.

**Step 4** – Compare the  $B_{10}$  universal joint bearing life value calculated in step 3 to the Bearing Life Requirement ( $B_{10}$ ) for your application listed in **table 1** on page 9. The calculated  $B_{10}$  bearing life must exceed the requirement of the vehicle application. If the  $B_{10}$  bearing life does not meet the application requirement repeat step 3 for the next larger Series until the  $B_{10}$  requirement is met.

# **Interaxle Driveline Series Selection (If Applicable)**

<u>Step 1</u> – Calculate the torque capacity requirement for the interaxle driveshaft using the following formula.

 $T = T_m x 0.60$  (lb.ft.) (tandem axle and tridem 1<sup>st</sup> interaxle)

T = Interaxle driveshaft torque requirement (lb.ft.)

 $T_m$  = Main driveline application torque requirement from step 2, page 7 (lb.ft.)

\* Use the calculated application torque value to select the appropriate interaxle driveline Series from **table 2** on page 9. The maximum torque rating of the selected Series must be equal to or greater than the application torque value.

# Note: High angle (45°) interaxle driveshafts are available in C2045, C2055, SPL170, SPL250 and 1710 Series only.

# <u>Step 2</u> – Calculate the Universal Joint Bearing Life (B<sub>10</sub>) for the Series selected in Step 1 using the following formula.

 $B_{10} = 182,700 x (AR x 37.8559/SLR)^{(7/3)} x (BF x 2.989/(GCW x AF))^{(10/3)}$  (mi.)

GCW = Maximum Gross Combination Weight (lbs.) AF = Application Factor (See **Table 1** on Page 9) SLR = Drive Tire Static Loaded Radius (in.) AR = Axle Ratio BF = Universal Joint Bearing Factor (lb.ft.) (See **Table 3** on Page 10)

# Note: For interaxle driveline applications with static universal joint true operating angles in excess of 6 degrees contact Spicer Engineering.

**<u>Step 3</u>** – Compare the B<sub>10</sub> universal joint bearing life value calculated in step 2 to the Bearing Life Requirement (B<sub>10</sub>) for your application listed in **table 3** on page 10. The calculated B<sub>10</sub> bearing life must exceed the requirement of the vehicle application. If the B<sub>10</sub> bearing life does not meet the application requirement repeat step 2 for the next larger Series until the B<sub>10</sub> requirement is met.

For tridem applications, the  $2^{nd}$  interaxle driveshaft can be the same or one Series smaller than the forward interaxle driveshaft (torque capacity and B<sub>10</sub> life calculations are not needed).

### **Application Factors, Ratings and Bearing Life Requirements**

| Application<br>Vocation | Application<br>Factor (AF) | Bearing Life<br>Requirement<br>Series |                | Main Driveline<br>Socios |        | -      | g Factor<br>SF) |
|-------------------------|----------------------------|---------------------------------------|----------------|--------------------------|--------|--------|-----------------|
| Linehaul                | 0.265                      |                                       | Series         | Nm                       | lb.ft. | Nm     | lb.ft.          |
| Coach Bus               |                            | GVW>14,968 Kg                         | 1610           | 7,728                    | 5,700  | 4,446  | 3,279           |
| General Freight         |                            | (33,000 lbs.) /                       | 1710           | 10,440                   | 7,700  | 5,840  | 4,307           |
| Refrigerated            |                            | GCW>22,680 Kg                         | 1710HD         | 13,829                   | 10,200 | 5,840  | 4,307           |
| Liquid Bulk             | 0.290                      | (50,000 lbs.)                         | 1760           | 13,829                   | 10,200 | 6,975  | 5,144           |
| Wrecker                 |                            | 1,609,000 Km<br>(1,000,000 mi.)       | 1760HD         | 16,541                   | 12,200 | 6,975  | 5,144           |
| Heavy<br>Equipment      |                            | (_),                                  | 1810           | 16,541                   | 12,200 | 7,646  | 5,639           |
| Refuse                  | -                          |                                       | 1810HD         | 22,371                   | 16,500 | 7,646  | 5,639           |
| Agriculture             |                            |                                       | SPL055         | 4,068                    | 3,000  | 2,345  | 1,730           |
| Oil Field               | 0.400                      | GVW≤14,968 Kg<br>(33,000 lbs.) /      | SPL070         | 5,288                    | 3,900  | 2,974  | 2,194           |
| Construction            | 0.400                      | GCW≤22,680 Kg<br>(50,000 lbs.)        | SPL100         | 7,728                    | 5,700  | 4,136  | 3,051           |
| Logging                 |                            |                                       | SPL140         | 14,000                   | 10,326 | 5,711  | 4,212           |
| Utility                 |                            | 804,672 Km<br>(500,000 mi.)           | SPL140HD       | 15,000                   | 11,063 | 5,711  | 4,212           |
| Mining                  | 0.520                      | (500,000 mi.)                         | SPL170         | 17,000                   | 12,538 | 9,509  | 7,013           |
| Military                | 0.520                      |                                       | SPL170HD       | 20,000                   | 14,751 | 9,509  | 7,013           |
| City P&D                |                            |                                       | SPL250         | 22,500                   | 16,595 | 10,893 | 8,034           |
| Shuttle Bus             | 0.400                      |                                       | SPL250HD       | 25,000                   | 18,439 | 10,893 | 8,034           |
| Transit Bus             | 0.400                      | 804,672 Km                            | SPL250 Lite HT | 25,000                   | 18,439 | 10,893 | 8,034           |
| Fire/Rescue             |                            | (500,000 mi.)                         | SPL350         | 30,000                   | 22,127 | 13,296 | 9,807           |
| School Bus              | 0.375                      |                                       | SPL350 Lite HT | 30,000                   | 22,127 | 13,296 | 9,807           |
| Rec. Vehicle            | 0.310                      |                                       | SPL350HD       | 35,000                   | 25,815 | 13,296 | 9,807           |
|                         |                            |                                       | C2035          | 10,000                   | 7,375  | 3,790  | 2,795           |
|                         | Table 1                    |                                       | C2040          | 14,000                   | 10,326 | 5,848  | 4,313           |

Table 1

Table 2

12,538

14,013

18,439

22,127

25,815

7,633

7,633

9,788

11,388

13,296

5,630

5,630

7,219

8,399

9,807

17,000

19,000

25,000

30,000

35,000

C2045

C2047

C2055

C2060

C2065

# Application Factors, Ratings and Bearing Life Requirements (Cont'd.)

| Interaxle<br>Driveline | Maximum Torque<br>Capacity |        | -     | g Factor<br>F) |
|------------------------|----------------------------|--------|-------|----------------|
| Series                 | Nm                         | lb.ft. | Nm    | lb.ft.         |
| 1710 I/A               | 10440                      | 7700   | 5840  | 4307           |
| 1710                   | 10440                      | 7700   | 5840  | 4307           |
| 1710HD                 | 13829                      | 10200  | 5840  | 4307           |
| 1810                   | 16541                      | 12200  | 7646  | 5639           |
| 1810HD                 | 22371                      | 16500  | 7646  | 5639           |
| SPL170 I/A             | 15000                      | 11063  | 9509  | 7013           |
| SPL170                 | 17000                      | 12538  | 9509  | 7013           |
| SPL170HD               | 20000                      | 14751  | 9509  | 7013           |
| SPL250 I/A             | 21000                      | 15489  | 10893 | 8034           |
| SPL250                 | 22500                      | 16595  | 10893 | 8034           |
| SPL250HD               | 25000                      | 18439  | 10893 | 8034           |
| C2035                  | 10000                      | 7375   | 3790  | 2795           |
| C2040                  | 14000                      | 10326  | 5848  | 4313           |
| C2045                  | 17000                      | 12538  | 7633  | 5630           |
| C2047                  | 19000                      | 14013  | 7633  | 5630           |
| C2055                  | 25000                      | 18439  | 9788  | 7219           |

Table 3

# **Critical Speed**

Critical speed is defined as: The speed at which the rotational speed of the driveshaft coincides with the natural frequency of the shaft.

#### **Standard Equation:**

$$CS = 30\pi \sqrt{\frac{E \times 386.4 \times (O^2 + I^2)}{\rho \times L^4 \times 16}}$$

 $\begin{array}{l} \text{CS} = \text{Critical Speed (rpm)} \\ \text{E} = \text{Modulus of tubing material (psi)} \\ \text{O} = \text{Outside Diameter of Tubing (in)} \\ \text{I} = \text{Inside Diameter of Tubing (in)} \\ \rho = \text{Density of Tubing Material (Ibs/in^3)} \\ \text{L} = \text{Distance Between Universal Joint Centers (in)} \end{array}$ 

\* Refer to "Spicer Standard Tube Sizes" on page 14 for tube dimensions.

| Material | Modulus (Ibs./in²)      | Density (lbs./in³) | E/P x 386.4            |
|----------|-------------------------|--------------------|------------------------|
| Steel    | 30.00 x 10 <sup>6</sup> | 0.2830             | 41.0 x 10 <sup>9</sup> |
| Aluminum | 10.30 x 10 <sup>6</sup> | 0.0980             | 39.4 x 10 <sup>9</sup> |

#### **Simplified Equations**

Steel:

$$CS = \frac{4.769 \, x \, 10^{\,6}}{L^2} \sqrt{O^2 + I^2}$$

#### Aluminum:

$$CS = \frac{4.748 \times 10^{6}}{L^{2}} \sqrt{O^{2} + I^{2}}$$

CS = Critical Speed (rpm) L = Distance Between Journal Cross Centers (in) O = Outside Diameter of Tubing (in) I = Inside Diameter of Tubing (in)

#### Adjusted Critical Speed (Maximum Safe Operating Speed)

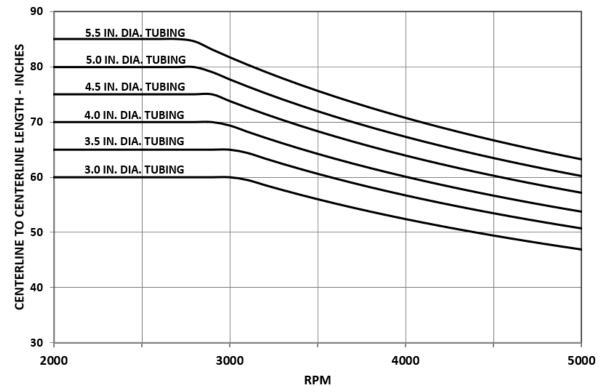
#### $ACS = TC \times CF \times SF$

ACS = Adjusted Critical Speed (rpm) TC = Theoretical Critical CF = Correction Factor SF = Safety Factor

Suggested factors for Adjusted Critical Speed:

Safety Factor = 0.75 Correction Factor Outboard Slip = 0.92 Inboard Slip = 0.75

# Note: The value for ACS (Maximum Safe Operating Speed) must be greater than the maximum driveshaft speed of the vehicle.


#### Maximum Driveshaft Length

Refer to the chart at the bottom of this page for maximum driveshaft length vs. RPM guidelines.

| Tube O.D.           | Maximum Length * Driveline Series |                    |
|---------------------|-----------------------------------|--------------------|
| 3.5 in. (88.9 mm)   | 65 in. (1651 mm)                  | SPL55, SPL70       |
| 4.0 in. (101.6 mm)  | 70 in. (1778 mm)                  | 1710, 1760, SPL100 |
| 4.21 in. (107.0 mm) | 72 in. (1829 mm)                  | SPL140             |
| 4.33 in. (110.0 mm) | 73 in. (1854 mm)                  | SPL140HD           |
| 4.5 in. (114.3 mm)  | 75 in. (1905 mm)                  | 1710, 1810         |
| 4.66 in. (118.4 mm) | 80 in. (2032 mm)                  | SPL250 Lite HT     |
| 4.72 in. (120.0 mm) | 80 in. (2032 mm)                  | SPL350 Lite HT     |
| 5.0 in. (127.0 mm)  | 80 in. (2032 mm)                  | SPL170, SPL250     |
| 5.5 in. (140 mm)    | 83 in. (2108 mm)                  | SPL350, SPL350HD   |

The general length limitations are as follows:

\*Installed length universal joint centerline to universal joint centerline.



#### DS Length vs RPM

# Spicer Standard Tube Sizes

| Series         | Tube Size (in)<br>OD x wall thickness | Dana Part<br>Number | Torque Rating<br>(Ibs. ft.) | Tube JAEL<br>(Ibs. ft.) |
|----------------|---------------------------------------|---------------------|-----------------------------|-------------------------|
| 1610           | 4.00 x .134                           | 32-30-52            | 5,700                       | 8,600                   |
| 1710           | 4.00 x .134                           | 32-30-52            | 7,700                       | 8,600                   |
| 1710 HD        | 4.09 x .180                           | 32-30-72            | 10,200                      | 13,925                  |
| 1760           | 4.00 x .134                           | 32-30-92            | 10,200                      | 10,435                  |
| 1760 HD        | 4.09 x .180                           | 32-30-72            | 12,200                      | 13,925                  |
| 1810           | 4.50 x .134                           | 36-30-62            | 12,200                      | 13,065                  |
| 1810 HD        | 4.59 x .180                           | 36-30-102           | 16,500                      | 17,935                  |
| SPL55          | 3.50 x .083                           | 28-30-62            | 3,000                       | 4,017                   |
| SPL 70         | 3.50 x .095                           | 28-30-22            | 3,900                       | 4,600                   |
| SPL 100        | 4.00 x .095                           | 32-30-12            | 5,700                       | 6,300                   |
| SPL 140        | 4.21 x .138                           | 100-30-3            | 7,744                       | 11,010                  |
| SPL 140 HD     | 4.33 x .197                           | 100-30-5            | 11,063                      | 16,519                  |
| SPL 170        | 4.96 x .118                           | 120-30-3            | 12,539                      | 13,185                  |
| SPL 170 HD     | 5.06 x .167                           | 120-30-4            | 14,751                      | 19,617                  |
| SPL 170 I/A    | 4.59 x .180                           | 36-30-102           | 11,063                      | 17,935                  |
| SPL 250 I/A    | 5.06 x .167                           | 120-30-4            | 15,489                      | 19,617                  |
| SPL250 Lite HT | 4.66 x .205                           | 108-30-5            | 18,439                      | 20,652                  |
| SPL 250        | 5.06 x .167                           | 120-30-4            | 16,595                      | 19,617                  |
| SPL250 HD      | 5.12 x .197                           | 120-30-5            | 18,439                      | 23,555                  |
| SPL350 Lite HT | 4.72 x .236                           | 108-30-6            | 22,127                      | 24,041                  |
| SPL350         | 5.45 x .167                           | 130-30-21720        | 22,127                      | 24,180                  |
| SPL350 HD      | 5.51 x .197                           | 130-30-21718        | 25,815                      | 28,731                  |

# **Center Bearing Mounting**

Spicer heavy duty center bearings must be mounted within 3° of perpendicular to the coupling shaft centerline as shown in Figure 1 below and the center bearing assembly must not operate with a linear offset greater than 1/8 inch as shown in Figure 2.

**Note:** The Spicer "Dura-Tune<sup>®</sup>" self-aligning center bearing may be mounted up to +/- 10° of perpendicular to the coupling shaft centerline as shown in the side view of Figure 1. The rubber isolator must remain perpendicular to the coupling shaft centerline within 3° as shown in Figure 1.

### Figure 1

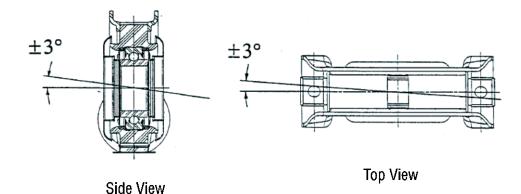
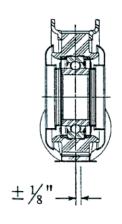



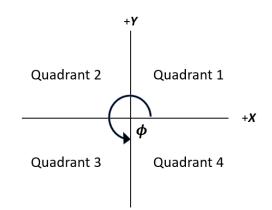

Figure 2



**Side View** 

# **Driveline Analysis**

#### **Design Criteria**


- **Torsional Vibration**
- Inertial Vibration
- Center Bearing Loading

#### **Torsional and Inertial Excitation**

Calculate the true universal joint operating angles for each universal joint location in Polar format ( $\theta \angle \phi$ )

$$\boldsymbol{\theta} = \sqrt{\boldsymbol{\theta}_{x}^{2} + \boldsymbol{\theta}_{y}^{2}} \qquad \boldsymbol{\phi} = tan^{-1} \left\{ \frac{\boldsymbol{\theta}_{y}}{\boldsymbol{\theta}_{x}} \right\}$$

It is critical that the correct polar angle value of  $\phi$  be determined for use in the torsional acceleration, inertial acceleration, and center bearing load calculations. This value must be expressed by a positive angle value originating at the positive x axis in the counterclockwise direction. The proper values for  $\phi$ can be obtained using the formulas below for the various values of  $\theta_{x}$ and  $\theta_{v}$ .



VIEW FROM REAR OF DRIVELINE

For positive values of  $\theta_x$  and  $\theta_y$  (quadrant 1):

For negative  $\theta_x$  and positive  $\theta_y$  (quadrant 2): ¢

For negative values of  $\theta_x$  and  $\theta_y$  (quadrant 3): φ

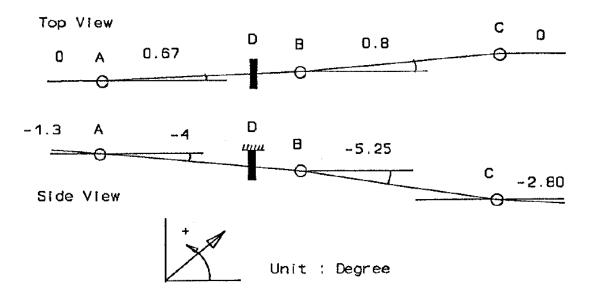
For positive  $\theta_x$  and negative  $\theta_y$  (quadrant 4):

For positive values of  $\theta_x$  and  $\theta_y = 0$  $\phi = 360^{\circ}$ 

For negative values of  $\theta_{\chi}$  and  $\theta_{\gamma} = 0$  $\phi = 180^{\circ}$ 

For positive values of  $\theta_v$  and  $\theta_x = 0$  $\phi = 90^{\circ}$ 

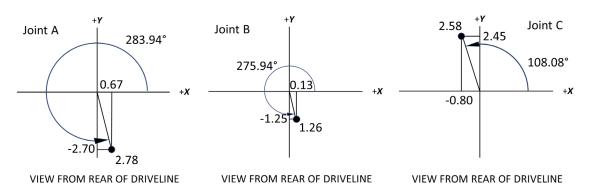
For negative values of  $\theta_v$  and  $\theta_x = 0$  $\phi = 270^{\circ}$ 


$$\boldsymbol{\phi} = tan^{-1}\left\{\frac{\theta_y}{\theta_x}\right\}$$

$$b = tan^{-1}\left\{\frac{ heta_y}{ heta_x}
ight\} + 180^{\circ}$$

$$=tan^{-1}\left\{\frac{\theta_{y}}{\theta_{x}}\right\}+180^{\circ}$$

$$\phi = tan^{-1}\left\{\frac{\theta_y}{\theta_x}\right\} + 360^\circ$$


**Driveline Layout Example:** 



To find the true joint angle of each joint, first find the top-view and side-view angles of each joint. The top-view angle of Joint A is equal to 0.67 - 0.00 = 0.67 and the side-view joint angle of Joint A is equal to (-4.0) - (-1.3) = -2.70. By putting the top-view angle (0.67) to the X-axis and the side-view angle (-2.70) to the Y-axis, the true joint angle of Joint A is equal to  $2.78^{\circ} \angle 283.94^{\circ}$ .

**Note:** The true joint angle is a vector: the 2.78° is the magnitude and the 283.94° is the argument. The true joint angles of joints A, B, and C are shown in the following chart.

|                                              | Trans U-joint<br>(A) degrees | U-joint<br>(B) degrees | Axle U-joint<br>(C) degrees |
|----------------------------------------------|------------------------------|------------------------|-----------------------------|
| Joint Angle - Top View $oldsymbol{	heta}_x$  | 0.67                         | 0.13                   | -0.80                       |
| Joint Angle - Side View $oldsymbol{	heta}_y$ | -2.70                        | -1.25                  | 2.45                        |
| True Joint Angle $oldsymbol{	heta}$          | 2.78                         | 1.26                   | 2.58                        |
| Plane of True Joint Angle $oldsymbol{\phi}$  | 283.94                       | 275.94                 | 108.08                      |



#### Calculate Torsional and Inertia Excitation

Step 1 - Calculate the torsional excitation, 
$$T_{max} \left\{ \frac{rad}{sec^2} \right\}$$
:

$$\Theta_{tor} = \sqrt{(|\theta_1| \angle \varphi_1)^2 + (|\theta_2|(\angle \varphi_2 - 90 - \delta_1))^2 + (|\theta_3|(\angle \varphi_3 - \delta_2 - \delta_1))^2 + (|\theta_4|(\angle \varphi_4 - 90 - \delta_3 - \delta_2 - \delta_1))^2}$$

\*Where  $|\theta_1| \ge \phi_1$  represents the true joint angle of the universal joint at the transmission output and  $\delta$  represents the shaft phase angle for each shaft (typically 0° or 90°). The formula shown is for a 3-piece driveline (4 universal joints). For two-piece drivelines enter zero for universal joint 4 and for single piece drivelines enter zero for universal joints 3 & 4. Contact Spicer Engineering for help with formulas for 4-piece (5 joint) drivelines.

$$T_{max} = (3.3405 x 10^{-6}) x (\theta)^2 x (rpm)^2 \left\{ \frac{rad}{sec^2} \right\}$$

Note: The Dana design limit for torsional excitation is 300  $\frac{rad}{sec^2}$  in all suspension conditions.

<u>Step 2</u> - Calculate the drive inertia excitation,  $I_D \left\{\frac{rad}{sec^2}\right\}$ :

3 pc. Driveline: 
$$\Theta_{drive\ inertial} = \sqrt{3(|\theta_1| \angle \phi_1)^2 + 2(|\theta_2| \angle (\phi_2 - 90^\circ - \delta_1))^2 + (|\theta_3| \angle (\phi_3 - \delta_2 - \delta_1))^2}$$

**2 pc. Driveline:**  $\Theta_{drive inertial} = \sqrt{2(|\theta_1| \angle \phi_1)^2 + (|\theta_2| \angle (\phi_2 - 90^\circ - \delta_1))^2}$ 

Single Driveline:  $\Theta_{drive inertial} = \sqrt{(|\theta_1| \angle \varphi_1)^2}$ 

\*Where  $\delta$  represents the shaft phase angle for each shaft (typically 0° or 90°).

 $I_D = (3.3405x10^{-6}) x (\theta)^2 x (rpm)^2 \left\{ \frac{rad}{sec^2} \right\}$ <u>Step 3</u> - Calculate the coast inertia excitation, lc  $\left\{ \frac{rad}{sec^2} \right\}$ :

3 Piece Drivelines: 
$$\Theta_{coast\ inertial} = \sqrt{3(|\theta_4| \angle \phi_4)^2 + 2(|\theta_3| \angle (\phi_3 + 90^\circ + \delta_3))^2 + (|\theta_2| \angle (\phi_2 + \delta_3 + \delta_2))^2}$$
  
2 Piece Drivelines:  $\Theta_{coast\ inertial} = \sqrt{2(|\theta_3| \angle \phi_3)^2 + (|\theta_2| \angle (\phi_2 + 90^\circ + \delta_2))^2}$ 

Single Drivelines: 
$$\boldsymbol{\Theta}_{coast\ inertial} = \sqrt{(|\boldsymbol{\theta}_2| \angle \boldsymbol{\phi}_2)^2}$$

\*Where  $\delta$  represents the shaft phase angle for each shaft (typically 0° or 90°).

$$I_{C} = (3.3405 x 10^{-6}) x (\theta)^{2} x (rpm)^{2} \left\{ \frac{rad}{sec^{2}} \right\}$$

Note: The Dana design limit for inertial excitation is 1000  $\frac{rad}{sec^2}$  in all suspension conditions.

#### **Center Bearing Loading**

#### Calculate Static and Dynamic Center Bearing Load – English Units

Static Loading, L<sub>s</sub> (lbs.):

$$L_{S} = \frac{6 x LGT}{AB - DB} \left\{ \left( \sin \theta_{A} \angle (\phi_{A} + 90) \right) + \left( \tan \theta_{B} - \frac{AB}{BC} \sin \theta_{B} \right) \angle (\phi_{B} + 90) + \frac{AB}{BC} \tan \theta_{C} \angle (\phi_{C} - 90) \right\}$$

Dynamic Loading, L<sub>D</sub> (lbs.):

$$L_{D} = \frac{6 \times LGT}{AB - DB} \Big\{ \Big( \sin \theta_{A} \angle (90 - \phi_{A}) \Big) + \Big( \tan \theta_{B} + \frac{AB}{BC} \sin \theta_{B} \Big) \angle (90 - \phi_{B} + 2\delta_{1}) + \frac{AB}{BC} \tan \theta_{C} \angle (90 - \phi_{C} + 2\delta_{1} + 2\delta_{2}) \Big\}$$

LGT = Maximum Driveshaft Low Gear Torque (lb.ft.)

AB = coupling shaft length from universal joint center to universal joint center (in)

DB = coupling shaft length from center bearing center to universal joint center (in)

BC = driveshaft length from universal joint center to universal joint center (in)

#### Note: Refer to the driveline layout diagram on page 17 to define lengths AB, DB and BC.

| Design            | Static Load | Dynamic Load | Applicable Series                                                                           |
|-------------------|-------------|--------------|---------------------------------------------------------------------------------------------|
| HD Solid Rubber   | 500 lbs.    | 500 lbs.     | 1710HD, 1760, 1810, SPL170, SPL250                                                          |
| HD Slotted Rubber | 250 lbs     | 250 lbs      | 1710HD, 1760, 1810, SPL140, SPL170,<br>SPL250, SPL350, C2045, C2047,<br>C2055, C2060, C2065 |
| MD Slotted Rubber | 100 lbs     | 100 lbs      | SPL100, SPL140, 1610, 1710<br>C2030, C2035, C2040                                           |

Maximum Center Bearing Loads

#### Calculate Static and Dynamic Center Bearing Load – Metric Units

Static Loading, L<sub>s</sub> (Kg)

$$L_{S} = \frac{1}{19.62} \frac{LGT}{AB - DB} \left\{ \left( \sin \theta_{A} \angle (\phi_{A} + 90) \right) + \left( \tan \theta_{B} - \frac{AB}{BC} \sin \theta_{B} \right) \angle (\phi_{B} + 90) + \frac{AB}{BC} \tan \theta_{C} \angle (\phi_{C} - 90) \right\}$$

Dynamic Loading, L<sub>D</sub> (Kg)

$$L_{D} = \frac{1}{19.62} \frac{LGT}{AB - DB} \left\{ \left( \sin \theta_{A} \angle (90 - \phi_{A}) \right) + \left( \tan \theta_{B} + \frac{AB}{BC} \sin \theta_{B} \right) \angle (90 - \phi_{B} + 2\delta_{1}) + \frac{AB}{BC} \tan \theta_{C} \angle (90 - \phi_{C} + 2\delta_{1} + 2\delta_{2}) \right\}$$

LGT = Maximum Driveshaft Low Gear Torque (Nm)

AB = coupling shaft length from universal joint center to universal joint center (m)

DB = coupling shaft length from center bearing center to universal joint center (m)

BC = driveshaft length from universal joint center to universal joint center (m)

#### Note: Refer to the driveline layout diagram on page 17 to define lengths AB, DB and BC.

| Design            | Static Load | Dynamic Load | Applicable Series                                                                           |
|-------------------|-------------|--------------|---------------------------------------------------------------------------------------------|
| HD Solid Rubber   | 226 Kg      | 226 Kg       | 1710HD, 1760, 1810, SPL170, SPL250                                                          |
| HD Slotted Rubber | 113 Kg      | 113 Kg       | 1710HD, 1760, 1810, SPL140, SPL170,<br>SPL250, SPL350, C2045, C2047,<br>C2055, C2060, C2065 |
| MD Slotted Rubber | 45 Kg       | 45 Kg        | SPL100, SPL140, 1610, 1710<br>C2030, C2035, C2040                                           |

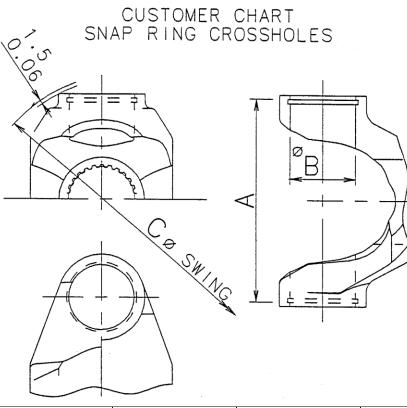
Maximum Center Bearing Loads

# **Application Form**

| DRIVETRAIN COMPONENTS            |                          | I           | Heavy   | / Medi    | um-Duty Application |
|----------------------------------|--------------------------|-------------|---------|-----------|---------------------|
| Company:                         |                          | Contact:    |         |           |                     |
| Email:                           |                          | Date:       |         |           |                     |
| Phone:                           |                          | Fax:        |         |           |                     |
| Vocation:                        | Vehicle Make:            |             | Vehicle | e Model:  |                     |
| Weight - Empty:                  |                          | _ GVW Total | :       |           |                     |
| GVW (Front):                     | GVW (Rear):              |             | GCW:    |           |                     |
| Tires - Size:                    | Make:                    |             | Rolling | g Radius: |                     |
| Engine - Make:                   | Model:                   |             | Displa  | cement:   |                     |
| Net Torque:                      | At Speed:                | _ Net H.P.: |         |           | At Speed:           |
| Gross Torque:                    | At Speed:                | Gross H.P.: |         |           | At Speed:           |
| Maximum Operating Spee           | d (including engine over | speed):     |         |           |                     |
| Trans - Make:                    |                          | Model:      |         |           |                     |
| Ratios - Forward (includin       | g overdrive):            |             | Revers  | e:        |                     |
| Torque Converter - Make:         | Model:                   |             |         | Stall Ra  | tio:                |
| Auxiliary - Make:                | Model:                   |             |         | Ratios:   |                     |
| Transfer Case - Make:            | Model:                   |             |         | Ratios:   |                     |
| Torque Split Ratio - Front:      | :                        |             | Rear: _ |           |                     |
| Axle Make - Front:               | Model:                   |             |         | Ratios:   |                     |
| Make - Front:                    | Model:                   |             |         | Ratios:   |                     |
| B <sub>10</sub> Life Expectancy: |                          |             |         |           |                     |
| Vehicle Duty Cycle:              |                          |             |         |           |                     |
| Description of Vehicle Functi    | ion:                     |             |         |           |                     |
|                                  |                          |             |         |           |                     |
|                                  |                          | Signed: _   |         |           |                     |
|                                  |                          | Title:      |         |           |                     |
| Spicer Engineer:                 |                          | _ Phone:    |         |           |                     |
|                                  |                          | Fax:        |         |           |                     |

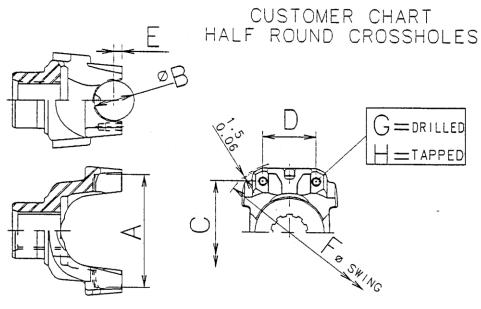


Heavy / Medium-Duty Applications


#### **APPLICATION PROPOSAL**

| Vehicle Position            | Series | Dana Part Number |
|-----------------------------|--------|------------------|
| Transmission to Rear Axle   |        |                  |
| Transmission to Auxiliary   |        |                  |
| Auxiliary to Rear Axle      |        |                  |
| Transmission to Mid Bearing |        |                  |
| Mid Bearing to Rear Axle    |        |                  |
| Interaxle                   |        |                  |
| Wheel Drive                 |        |                  |

| Vehicle Application Sketch |   |      |  |  |  |  |  |
|----------------------------|---|------|--|--|--|--|--|
|                            |   |      |  |  |  |  |  |
|                            |   |      |  |  |  |  |  |
|                            |   |      |  |  |  |  |  |
| Plan View                  | ] |      |  |  |  |  |  |
|                            |   |      |  |  |  |  |  |
|                            |   |      |  |  |  |  |  |
|                            |   |      |  |  |  |  |  |
| Side View                  | ] |      |  |  |  |  |  |
| Proposed By:               |   |      |  |  |  |  |  |
|                            |   | DANA |  |  |  |  |  |
|                            |   |      |  |  |  |  |  |


# Yoke Dimensions

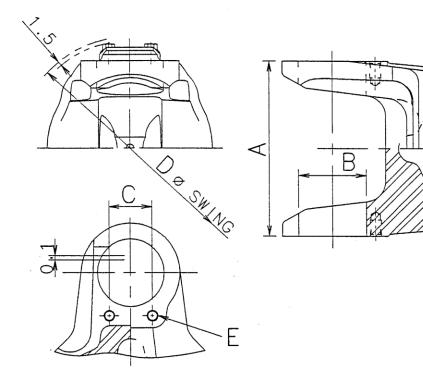
## **Snap Ring Cross Holes**



| Туре         | Series           | A (mm / in)  | B (mm / in) | C* (mm / in) |
|--------------|------------------|--------------|-------------|--------------|
|              | 1210             | 65.0 / 2.56  | 26.9 / 1.06 | 79.2 / 3.12  |
|              | 1280 / 1310      | 84.8 / 3.34  | 26.9 / 1.06 | 96.8 / 3.81  |
|              | 1330             | 95.0 / 3.74  | 26.9 / 1.06 | 106.4 / 4.19 |
| Snap Ring    | 1350             | 95.0 / 3.74  | 30.2 / 1.19 | 108.0 / 4.25 |
| Construction | 1410             | 109.2 / 4.30 | 30.2 / 1.19 | 124.0 / 4.88 |
|              | 1480 / SPL 55    | 109.2 / 4.30 | 34.8 / 1.37 | 124.0 / 4.88 |
|              | 1550 / SPL 70    | 129.0 / 5.08 | 34.8 / 1.37 | 144.5 / 5.69 |
|              | SPL 90 / SPL 100 | 130.6 / 5.14 | 41.1 / 1.62 | 149.4 / 5.88 |
|              | 1650             | 146.8 / 5.78 | 41.1 / 1.62 | 165.1 / 6.50 |
|              | SPL350           | 177.0 / 6.97 | 65.0 / 2.56 | 206.0 / 8.11 |

\* Swing diameter clears yoke by 1.5 mm (0.06 in)

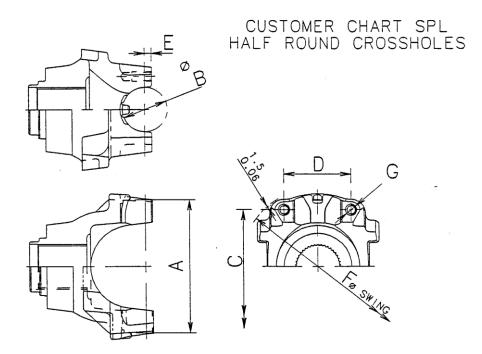



| Туре      | Series    | A (mm / in)  | B (mm / in) | C (mm / in)  | D (mm / in) | E (mm / in) | F* (mm / in) | G (mm /<br>in) | н          |
|-----------|-----------|--------------|-------------|--------------|-------------|-------------|--------------|----------------|------------|
|           | 1210      | 62.0 / 2.44  | 26.9 / 1.06 | 56.4 / 2.22  | 35.8 / 1.41 | 0.8 / 0.03  | 87.4 / 3.44  | 8.4 / 0.33     | -          |
|           | 1280/1310 | 81.8 / 3.22  | 26.9 / 1.06 | 73.9 / 2.91  | 35.8 / 1.41 | 0.8 / 0.03  | 101.6 / 4.00 | 8.4 / 0.33     | -          |
| U-bolt    | 1330      | 91.9 / 3.62  | 26.9 / 1.06 | 84.1 / 3.31  | 35.8 / 1.41 | 0.8 / 0.03  | 115.8 / 4.56 | 8.4 / 0.33     | -          |
| Design    | 1350      | 91.9 / 3.62  | 30.2 / 1.19 | 81.0 / 3.19  | 42.2 / 1.66 | 0.8 / 0.03  | 115.8 / 4.56 | 9.9 / 0.39     | -          |
|           | 1410      | 106.4 / 4.19 | 30.2 / 1.19 | 95.2 / 3.75  | 42.2 / 1.66 | 0.8 / 0.03  | 125.5 / 4.94 | 9.9 / 0.39     | -          |
|           | 1480      | 106.4 / 4.19 | 35.1 / 1.38 | 93.7 / 3.69  | 48.5 / 1.91 | 0.8 / 0.03  | 134.9 / 5.31 | 11.7 / 0.46    | -          |
|           | 1550      | 126.2 / 4.97 | 35.1 / 1.38 | 113.5 / 4.47 | 48.5 / 1.91 | 0.8 / 0.03  | 152.4 / 6.00 | 11.7 / 0.46    | -          |
|           | 1210      | 62.0 / 2.44  | 26.9 / 1.06 | 53.8 / 2.12  | 40.1 / 1.58 | 0.8 / 0.03  | 87.4 / 3.44  | -              | 0.25 - 28  |
|           | 1280/1310 | 81.8 / 3.22  | 26.9 / 1.06 | 73.9 / 2.91  | 40.1 / 1.58 | 0.8 / 0.03  | 101.6 / 4.00 | -              | 0.25 - 28  |
| Bearing   | 1330      | 91.9 / 3.62  | 26.9 / 1.06 | 84.1 / 3.31  | 40.1 / 1.58 | 0.8 / 0.03  | 115.8 / 4.56 | -              | 0.25 - 28  |
| Strap     | 1350      | 91.9 / 3.62  | 30.2 / 1.19 | 81.0 / 3.19  | 45.7 / 1.80 | 0.8 / 0.03  | 115.8 / 4.56 | -              | 0.312 - 24 |
| Tapped    | 1410      | 106.4 / 4.19 | 30.2 / 1.19 | 95.2 / 3.75  | 45.7 / 1.80 | 0.8 / 0.03  | 125.5 / 4.94 | -              | 0.312 - 24 |
| Hole      | 1480      | 106.4 / 4.19 | 35.1 / 1.38 | 93.7 / 3.69  | 53.8 / 2.12 | 0.8 / 0.03  | 134.9 / 5.31 | -              | 0.375 - 24 |
|           | 1550      | 126.2 / 4.97 | 35.1 / 1.38 | 113.5 / 4.47 | 53.8 / 2.12 | 0.8 / 0.03  | 152.4 / 6.00 | -              | 0.375 - 24 |
|           | 1610      | 134.9 / 5.31 | 47.8 / 1.88 | 122.2 / 4.81 | 63.5 / 2.50 | 9.7 / 0.38  | 171.4 / 6.75 | -              | 0.375 - 24 |
|           | 1710      | 157.2 / 6.19 | 49.3 / 1.94 | 142.0 / 5.59 | 71.4 / 2.81 | 7.9 / 0.31  | 190.5 / 7.50 | -              | 0.50 - 20  |
|           | 1760      | 180.1 / 7.09 | 49.3 / 1.94 | 165.1 / 6.50 | 71.4 / 2.81 | 7.9 / 0.31  | 212.9 / 8.38 | -              | 0.50 - 20  |
|           | 1810      | 194.1 / 7.64 | 49.3 / 1.94 | 179.1 / 7.05 | 71.4 / 2.81 | 7.9 / 0.31  | 228.6 / 9.00 | -              | 0.50 - 20  |
| Bearing   | 1410      | 106.4 / 4.19 | 30.2 / 1.19 | 95.2 / 3.75  | 45.7 / 1.80 | 0.8 / 0.03  | 125.5 / 4.94 | 8.4 / 0.33     | -          |
| Strap     | 1480      | 106.4 / 4.19 | 35.1 / 1.38 | 93.7 / 3.69  | 53.8 / 2.12 | 0.8 / 0.03  | 134.9 / 5.31 | 9.9 / 0.39     | -          |
| Thru-Hole | 1550      | 126.2 / 4.97 | 35.1 / 1.38 | 113.5 / 4.47 | 53.8 / 2.12 | 0.8 / 0.03  | 152.4 / 6.00 | 9.9 / 0.39     | -          |

10 Series Half Round Cross Holes

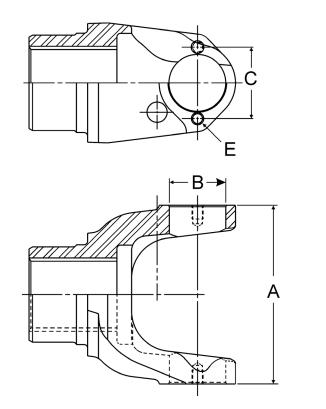
\* Swing diameter clears yoke by 1.5 mm (0.06 in)

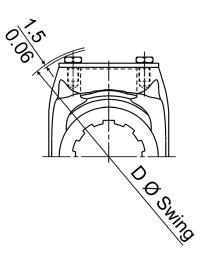
#### **SPL Full Round Cross Holes**


CUSTOMER CHART SPL FULL ROUND CROSSHOLES



| Туре  | Series  | A (mm/in)  | B (mm/in) | C (mm/in) | D * (mm/in) | E (mm)    |
|-------|---------|------------|-----------|-----------|-------------|-----------|
| SPL   | SPL 140 | 128 / 5.04 | 49 / 1.93 | 32 / 1.26 | 160 / 6.30  | M8 x 1.00 |
| Full  | SPL 170 | 153 / 6.02 | 55 / 2.17 | 32 / 1.26 | 185 / 7.28  | M8 x 1.00 |
| Round | SPL 250 | 152 / 5.98 | 60 / 2.36 | 32 / 1.26 | 184 / 7.24  | M8 x 1.00 |


\* Swing diameter clears yoke by 1.5 mm (0.06 in)

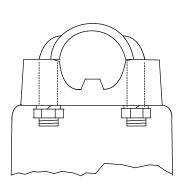

#### **SPL Half Round Cross Holes**



| Туре             | Series  | A (mm) | B (mm) | C (mm) | D (mm) | E (mm) | F *<br>(mm) | G              |
|------------------|---------|--------|--------|--------|--------|--------|-------------|----------------|
|                  | SPL 55  | 106.4  | 35.1   | 93.7   | 53.8   | 0.8    | 134.9       | 0.375 x 24 UNF |
|                  | SPL 70  | 126.2  | 35.1   | 113.5  | 53.8   | 0.8    | 152.4       | 0.375 x 24 UNF |
| Bearing<br>Strap | SPL 100 | 126    | 41     | 115    | 59     | 6      | 154         | 0.375 x 24 UNF |
| Tapped<br>Hole   | SPL 140 | 139    | 49     | 113    | 76     | 8      | 174         | 12 x 1.25 mm   |
|                  | SPL 170 | 164    | 55     | 140    | 82     | 8      | 193         | 12 x 1.25 mm   |
|                  | SPL 250 | 163    | 60     | 135    | 88     | 10     | 193         | 12 x 1.25 mm   |
|                  | SPL 350 | 171.8  | 65     | 142    | 100    | 0      | 219         | 14 x 1.25 mm   |

### **Bearing Plate Cross Holes**



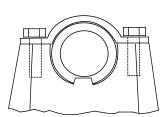



| Туре     | Series | A (mm / in) | B (mm / in) | C (mm / in) | D* (mm/in) | E        |
|----------|--------|-------------|-------------|-------------|------------|----------|
| Destring | 1610   | 134.9/5.31  | 47.8/1.88   | 58.7/2.31   | 180.8/7.12 | 0.312-24 |
| Bearing  | 1710   | 154.7/6.09  | 49.3/1.94   | 62.0/2.44   | 200.2/7.88 | 0.375-24 |
| Full     | 1760   | 177.8/7.00  | 49.3/1.94   | 62.0/2.44   | 220.5/8.68 | 0.375-24 |
| Round    | 1810   | 191.8/7.55  | 49.3/1.94   | 62.0/2.44   | 235.0/9.25 | 0.375-24 |
|          | 1880   | 205.5/8.09  | 55.6/2.19   | 71.4/2.81   | 250.9/9.88 | 0.438-20 |

\*Swing Diameter Clears Yoke by 1.5/0.06 mm/in.

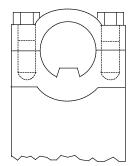
# Universal Joint Kit Attaching Hardware and Torque Specifications

#### **U-bolts**




| Series         | Spicer U-Joint Kit<br>No | U-Bolt Kit | Recommended<br>Nut Torque    |
|----------------|--------------------------|------------|------------------------------|
| 1310,<br>SPL22 | 5-1310X, 5-1310-1X       | 2-94-28X   | 14-17 lbs. ft.<br>(19-23 Nm) |
| 1330,<br>SPL25 | 5-1330X, 5-1330-1X       | 2-94-28X   | 14-17 lbs. ft.<br>(19-23 Nm) |
| 1350,<br>SPL30 | 5-1350X, 1350-1X         | 3-94-18X   | 20-24 lbs. ft.<br>(27-32 Nm) |
| 1410,<br>SPL36 | 5-1410X, 5-1410-1X       | 3-94-18X   | 20-24 lbs. ft.<br>(27-32 Nm) |
| 1480,<br>SPL55 | SPL55X, SPL55-1X         | 3-94-28X   | 32-37 lbs. ft.<br>(43-50 Nm) |
| 1550,<br>SPL70 | SPL70X, SPI70-1X         | 3-94-28X   | 32-37 lbs. ft.<br>(43-50 Nm) |

#### **Bearing Strap**


A

**WARNING:** Bearing strap retaining bolts should not be reused.



| Series | Spicer U-Joint Kit No | Strap and<br>Bolt Kit | Recommended Bolt<br>Torque  |
|--------|-----------------------|-----------------------|-----------------------------|
| SPL90  | SPL90X                | 90-70-28X             | 45-60 lb.ft. (61-81 Nm)     |
| SPL100 | SPL100X               | 90-70-28X             | 45-60 lb.ft. (61-81 Nm)     |
| 1210   | 5-443X                | 2-70-18X              | 13-18 lb.ft. (18-24 Nm)     |
| 1310,  | 5-1310X, 5-1310-1X    | 2-70-18X              | 13-18 lb.ft. (18-24 Nm)     |
| 1330,  | 5-1330X, 5-1330-1X    | 2-70-18X              | 13-18 lb.ft. (18-24 Nm)     |
| 1350,  | 5-1350X, 5-1350-1X    | 3-70-28X              | 30-35 lb.ft. (41-47 Nm)     |
| 1410,  | 5-1410X, 5-1410-1X    | 3-70-28X              | 30-35 lb.ft. (41-47 Nm)     |
| 1480,  | SPL55X, SPL55-1X      | 3-70-38X              | 45-60 lb.ft. (61-81 Nm)     |
| 1550,  | SPL70X, SPL70-1X      | 3-70-38X              | 45-60 lb.ft. (61-81 Nm)     |
| 1610   | 5-674X                | 5-70-28X              | 45-60 lb.ft. (61-81 Nm)     |
| 1710   | 5-675X                | 6.5-70-18X            | 115-135 lb.ft. (156-183 Nm) |
| 1760   | 5-677X                | 6.5-70-18X            | 115-135 lb.ft. (156-183 Nm) |
| 1810   | 5-676X                | 6.5-70-18X            | 115-135 lb.ft. (156-183 Nm) |

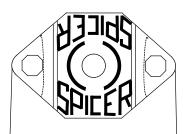
#### **Cap and Bolts**



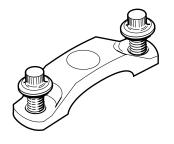
| Series | Spicer Kit No | Cap and Bolt Kit | Recommended<br>Bolt Torque |
|--------|---------------|------------------|----------------------------|
| 1650   | 5-165X        | 5-70-18X         | 77-103 lb. ft.             |
| 1850   | 5-185X        | 8-70-18X         | 110-147 lb. ft.            |
| 2050   | 5-340X        | 9-70-28X         | 744-844 lb. ft.            |

#### **Bearing Plate**



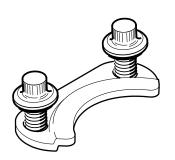

**WARNING:** Self-locking bolts should not be reused.

Serrated Bolts with Lock Patch / No Lock Strap (Models after Spring 1994)


| Series | Bolt Part<br>No | Thread<br>Size | Recommended Bolt<br>Torque |  |
|--------|-----------------|----------------|----------------------------|--|
| 1610   | 5-73-709        | .312-24        | 26-35 lb.ft. (36-47 Nm)    |  |
| 1710   | 6-73-209        | .375-24        | 38-48 lb.ft. (52-65 Nm)    |  |
| 1760   | 6-73-209        | .375-24        | 38-48 lb.ft. (52-65 Nm)    |  |
| 1810   | 6-73-209        | .375-24        | 38-48 lb.ft. (52-65 Nm)    |  |
| 1880   | 7-73-315        | .438-20        | 60-70 lb.ft. (82-95 Nm)    |  |

#### Bolt with Lock Strap (Pre-Spring 1994 Models)

| Series | Bolt Part<br>No | Thread<br>Size | Recommended Bolt<br>Torque |
|--------|-----------------|----------------|----------------------------|
| 1610   | 5-73-109        | .312-24        | 26-35 lb.ft. (36-47 Nm)    |
| 1710   | 6-73-109        | .375-24        | 38-48 lb.ft. (52-65 Nm)    |
| 1760   | 6-73-109        | .375-24        | 38-48 lb.ft. (52-65 Nm)    |
| 1810   | 6-73-109        | .375-24        | 38-48 lb.ft. (52-65 Nm)    |
| 1880   | 7-73-115        | .438-20        | 60-70 lb.ft. (82-95 Nm)    |




## **Bearing Retainer**



| Series | U-Joint<br>Kit No | Retainer<br>Kit No | Bolt Part<br>No | Recommended<br>Bolt Torque     |
|--------|-------------------|--------------------|-----------------|--------------------------------|
| SPL140 | SPL140X           | 140-70-18X         | 5007417         | 100-125 lb.ft.<br>(136-169 Nm) |
| SPL170 | SPL170-4X         | 170-70-18X         | 5007417         | 100-125 lb.ft.<br>(136-169 Nm) |
| SPL250 | SPL250-3X         | 250-70-18X         | 5007417         | 100-125 lb.ft.<br>(136-169 Nm) |
| SPL350 | SPL350X           | 350-70-18X         | 5019836         | 177-199 lb.ft.<br>(240-270 Nm) |

Spring Tab



| Series | U-Joint<br>Kit No | Spring Tab<br>Kit No | Bolt Part<br>No | Recommended<br>Bolt Torque |
|--------|-------------------|----------------------|-----------------|----------------------------|
| SPL140 | SPL140X           | 211941X              | 8-73-114M       | 25-30 lb.ft.<br>(34-40 Nm) |
| SPL170 | SPL170X           | 211941X              | 8-73-114M       | 25-30 lb.ft.<br>(34-40 Nm) |
| SPL250 | SPL250X           | 211941X              | 8-73-114M       | 25-30 lb.ft.<br>(34-40 Nm) |